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Abstract
Many real world datasets occur or can be
arranged into multi-modal structures. With
such datasets, the tasks to be learnt can be
referenced by multiple indices. Current mul-
titask learning frameworks are not designed
to account for the preservation of this infor-
mation. We propose the use of multilinear
algebra as a natural way to model such a
set of related tasks. We present two learn-
ing methods; one is an adapted convex relax-
ation method used in the context of tensor
completion. The second method is based on
the Tucker decomposition and on alternating
minimization. Experiments on synthetic and
real data indicate that the multilinear ap-
proaches provide a significant improvement
over other multitask learning methods. Over-
all our second approach yields the best per-
formance in all datasets.

1. Introduction

The principal assertion in Multitask Learning (MTL)
is that the combined learning of multiple related tasks
can outperform learning each task in isolation, see for
example (Argyriou et al., 2008a; Baxter, 2000; Caru-
ana, 1997; Romera-Paredes et al., 2012) and references
therein. In doing this, MTL allows for common infor-
mation shared between the tasks to be used in the
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learning process, which leads to better generalization
if the tasks are related (Ando and Zhang, 2005; Baxter,
2000; Maurer, 2009; Maurer and Pontil, 2012; Maurer
et. al, 2013). For example, consider a task to be a
regression problem in predicting restaurant ratings by
a specific restaurant critic, given a restaurant as an
input query. If we then include ratings from N critics,
this will lead to N tasks. MTL methods will learn all
of the regression functions that model all N tasks to-
gether by exploiting the common trends among all of
the restaurant raters as well as the individual prefer-
ences.

Traditional MTL methods do not consider any addi-
tional inherent structure in the dataset and therefore
the referencing of the tasks is simplified to a single in-
dex i; in the above example this would refer to the
raters ranging from 1 to N . However, it is clear that a
loss of information would arise if these methods were
applied to datasets that are defined by multiple in-
dices. For example, if our restaurant critics rated M
separate aspects of each restaurant, this would give
rise to a second index j ranging from 1 to M . This
2-dimensional indexing information would be lost in
a traditional MTL approach. In this paper, we pro-
pose to extend the method developed in (Argyriou
et al., 2008a) to consider the inherent structures in
such datasets by preserving multi dimensional indices
(or modes) which are associated with the tasks. To
this end, we propose the use of multilinear models as
a natural underpinning to represent this structural in-
formation. We will refer to our proposed framework
as Multilinear Multitask Learning (MLMTL).

The use of multilinear models in previous applications
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has been shown to be effective in determining separate
underlying factors in data. In (Tenenbaum & Free-
man, 2000) the authors introduced a bilinear model
as a basis to represent the relationships in data with
two modes. A common application for this bilinear
model is to decouple two mode data for classification
purposes; for example in (Mpiperis et al., 2008) the
authors separate facial identity factors and expression
factors to classify an emotional state and subject iden-
tity. By using bilinear models, the bi-factor interac-
tions were more accurately represented. By extension,
multilinear models in general have been used to sepa-
rate more than two modes in similar datasets. For ex-
ample (Vasilescu & Terzopoulos, 2002) decompose nat-
ural facial images according to four modes: identity,
expression, head pose and lighting condition. Mul-
tilinear models have also been extended to account
for different assumptions in the data. In (Vasilescu
& Terzopoulos, 2005), the authors propose multilinear
independent component analysis, where the factors ex-
tracted for each mode are not only uncorrelated but
also statistically independent.

In this paper we form a multilinear model by struc-
turing the weight parameters of all tasks into a tensor.
This is a departure from the aforementioned studies,
where the multilinear decomposition was applied di-
rectly to the input data, obtaining unsupervised learn-
ing models which can be seen as higher-order general-
izations of principal (or independent) component anal-
ysis. The tensor representation allows us to account
for the multi-modal interactions between the tasks. In
addition, our approach allows one to make predictions
even in absence of training data for one or more of
the tasks, thereby providing a useful tool for transfer
learning, see e.g. (Argyriou et al., 2008b). For exam-
ple, the vector of parameters for the (i, j)-task can still
be estimated provided that training data are available
for at least one task (i, k), k 6= j and one other task
(`, j), ` 6= i.

In order to formulate MLMTL, we follow a complex-
ity regularization approach which encourages low rank
matricizations (Kolda & Bader, 2009) of the weight
tensor. However, the regularization term will cause a
non convex minimization problem. Therefore, the first
of our learning approaches involves a convex relaxation
of the original minimization problem. This solution is
based on several recent studies which have showed that
the use of the trace norm of tensors provides close con-
vex approximations of similar minimization problems
(Gandy et al., 2011; Liu et al., 2009; Signoretto et al.,
2011; Tomioka, 2010). For our second approach we in-
vestigate a different strategy that makes use of an al-
ternating minimization scheme for Tucker decomposed

components of the original weight tensor. In summary,
the main contributions of this paper are:

• The extension of multitask learning to account for
multi-modal relationships among tasks using mul-
tilinear models;

• The introduction of an alternating minimization
algorithm for MLMTL which implements the
Tucker decomposition;

• A framework for transfer learning with multilinear
models.

The remainder of this paper is organized as follows. In
Section 2, we describe the key concepts from multilin-
ear algebra that are needed to formulate our learning
problem. In the following two sections, we describe
two alternative ways to obtain solutions to the pro-
posed problem: Section 3 describes a convex relaxation
of the learning problem, whereas Section 4 presents an
alternating minimization algorithm for Tucker decom-
position. In Section 5 we compare the proposed ten-
sor based methods with respect to their matrix based
MTL counterparts. Additionally, non MTL baseline
models are also compared. Finally, in Section 6 we
conclude with a discussion of the results obtained.

2. Formulation

We begin by introducing some notation. We let N be
the set of natural numbers and, for every k ∈ N, we
use [k] to denote the set of integers up to and including
k. Let N ∈ N and choose p1, . . . , pN ∈ N. An N -order
tensor, X ∈ Rp1×···×pN , is a collection of real numbers
(Xi1,...,iN : in ∈ [pn], n ∈ [N ]). Vectors are 1-order
tensors and will be denoted by lower case letters, e.g.
a or b; matrices are 2-order tensors and will be denoted
by upper case letters, e.g. A or B. Boldface letters,
e.g. X,W , will be used to denote tensors of order
higher than two. We use the symbol “ :” in the lower-
script indices to denote sub-arrays within a matrix or
a tensor, e.g. if A ∈ Rp1×p2 , then A:,i ∈ Rp1 denotes
the i-th column of A, for every i ∈ [p1]. For the sake
of clarity, colons at the beginning of superscripts are
omitted so that Ai := A:,i ∈ Rp1 .

Mode-n fiber is a vector composed of the elements
of a tensor obtained by fixing all indices but one, cor-
responding to the n-th mode. This notion is a higher
order analogue of columns (mode-1 fibers) and rows
(mode-2 fibers) in matrices. For example, in a 3-order
tensor X ∈ Rp1×p2×p3 , the set of vectors of the form
{Xi1,:,i3 ∈ Rp2 : i1 ∈ [p1], i3 ∈ [p3]} are mode-2 fibers
of tensor X.
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Mode-n matricization is the process of rearranging
all the elements of a tensor X ∈ Rp1×···×pN into a ma-
trix. Specifically, if n ∈ [N ], the mode-nmatricization,
denoted as X(n), is obtained by arranging the mode-n
fibers of the tensor so that each of them is a column
of X(n) ∈ Rpn×Jn , where we define Jn :=

∏
k 6=n pk.

Mode-n product is the product of a tensor X ∈
Rp1×···×pN with a matrix A ∈ RJ×pn , denoted byX×n
A. The result is a new tensor of size p1×· · ·×pn−1×J×
pn+1×· · ·×pN , where each mode-n fiber is multiplied
by A, that is

(X ×n A)i1,...,in−1,j,in+1,...,iN
=

pn∑
in=1

Xi1,...,iNAj,in .

Rankn is the dimension of the space spanned by the
mode-n fibers, that is the rank of the mode-n matri-
cization of the tensor, rankn(X) := rank(X(n)). If X
is a matrix, this is the usual definition of rank, since
rank1(X) = rank2(X) = rank(X). For higher order
tensors, however, rankn (X) varies with n.

We are now ready to describe the learning problem.
We consider a set of T linear regression tasks, each
of which is represented by a vector wt ∈ Rd, t ∈ [T ].
Each task is associated with two or more modes (recall
the restaurant rating example described in the intro-
duction). We regard the d× T matrix [w1, . . . , wT ] as
the mode-1 matricization, W(1), of the tensor W ∈
Rp1×···×pN . Thus p1 = d, T = J1 =

∏N
n=2 pn

and the index t can be identified by the multi-index
(i2, . . . , iN ) ∈ [p2] × · · · × [pN ]. For each task t we
sample the underlying regression problem mt times,
obtaining a set of input/output observations, where
(xti, y

t
i) ∈ Rd × R, i = 1, . . . ,mt. We also use the

shorthand notation for the data term

F (W ) =

T∑
t=1

mt∑
i=1

L(〈xti, wt〉, yti) (1)

where 〈·, ·〉 is the inner product in Rd, L is a prescribed
loss function, e.g. the square error L(z, y) = (z − y)2.

We estimate the regression vectors as the solution of
the joint optimization problem

min {F (W ) + γR(W )} (2)

where γ is a positive parameter which may be cho-
sen by cross validation. The regularizer R encourages
common structure between the tasks. In particular,
our goal is to encourage the tensors W which have a
simple structure in the sense that they involves a small
number of “degree of freedoms”. To this end, a natu-
ral choice is to consider the sum of the ranks of the

matricizations of the tensors. Specifically, we let

R(W ) =
1

N

N∑
n=1

rankn(W ). (3)

3. Convex Relaxation

Finding a convex relaxation of R (·) has been the ob-
jective of recent works (Gandy et al., 2011; Liu et al.,
2009; Signoretto et al., 2011). All of them agree to
use the trace norm for tensors as a good convex proxy.
This is defined as the average of the trace norm of each
matricization of W ,

‖W ‖tr =
1

N

N∑
n=1

‖W(n)‖1 (4)

where ‖ · ‖1 is the trace norm of a matrix, namely the
`1-norm of the singular values. Note that in the par-
ticular case of 2-order tensor, (4) coincides with the
usual notion of trace norm of a matrix. The above ob-
servation motivates us to consider the convex problem

min
W

{
F (W ) + γ ‖W ‖tr

}
. (5)

When N = 2 problem (5) is equivalent to the one
proposed in (Argyriou et al., 2008a). However, if N >
2, problem (5) is more difficult to solve due to the
composite nature of the regularizer (4). To explain this
observation, we introduce N auxiliary tensors Bn ∈
Rp1×···×pN , n ∈ [N ], each of which represents a version
of the original tensor W . With this notation, problem
(5) can be reformulated as

min
W ,B1,...,BN

{
F (W ) + γ

N∑
n=1

∥∥(Bn)(n)
∥∥
1

(6)

s.t :Bn = W , n ∈ [N ]

}
where all the trace norm regularizers on the auxiliary
matrix are related through the equality constraints.
As noted by Gandy et al. (2011) and Signoretto (2013)
problem (6) can be solved by the alternating direc-
tion method of multipliers (ADM) (see e.g. Bertsekas
& Tsitsiklis, 1989). This optimization strategy allows
problem 6 to be decoupled into independent subprob-
lems which no longer have interdependent trace norm
constraints. This decoupling is achieved by introduc-
ing a set of Lagrange multipliers Cn, ∀n ∈ {1, . . . , N}.
The resultant augmented Lagrangian function is (Bert-
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sekas & Tsitsiklis, 1989)

L (W ,C,B) = F (W ) +

N∑
n=1

(
γ
∥∥(Bn)(n)

∥∥
1

− 〈Cn,W −Bn〉+
β

2
‖W −Bn‖2Fr

)
(7)

for some β > 0, where the inner product between ten-
sors is defined as the regular inner product between the
vectorized form of the tensors. Appendix A describes
an algorithm to solve problem (7).

The main advantage of this approach is that it al-
ways obtains the global solution of problem (4). How-
ever the fact that the outputs of the algorithm are
the weight vectors themselves leads to two important
drawbacks. First, transfer learning is not possible
straight from the model. This is because the fac-
tors (see equation (8) below) are learned implicitly
but one cannot have access to them under this ap-
proach. Therefore, if we want to add a new entity
(e.g. a new restaurant in the example described in the
introduction), the whole algorithm needs to be run
again from scratch. The second drawback is related to
memory necessities. In some problems, dealing with
the whole weight tensor W can be problematic since
this can be very large. Furthermore, this approach
needs to keep N + 1 versions of the tensor in mem-
ory so the total memory needed to run the algorithm
is O

(
(N + 1)

∏N
n=1 pn

)
, which can be unfeasible for

many problems. Finally, note that this approach is
not optimizing the original problem but a convex ap-
proximation of it. To overcome these shortcomings,
we propose a new method in the following section.

4. Obtaining Local Solutions of the
Original Problem

In this section, we describe an alternative method
which encourages low rank representations of the ten-
sor using the Tucker decomposition, (see e.g. Kolda &
Bader, 2009). It is defined as

W i1,...,iN =

k1∑
j1=1

· · ·
kN∑
jN=1

Gj1,...,jNA
(1)
i1,j1
· · ·A(N)

iN ,jN

where W ∈ Rp1×···×pN is the tensor containing all
weight vectors, A(n) ∈ Rpn×kn , n ∈ [N ], are the factor
matrices and G ∈ Rk1×···×kN , which is called the core
tensor, models the interaction between factors. Figure
1 depicts the Tucker decomposition of a 3 mode ten-
sor. We can also express this decomposition in a more
compact way using the matricization and product op-
erators,

W = G×1 A
(1) · · · ×N A(N). (8)

Figure 1. Tucker decomposition of a 3 mode tensor.

We would like to minimize the error term F (W ) in
equation (1), over tensors of the form (8). Note that
the Tucker decomposition is invariant under multipli-
cation and division of different factors by the same
scalar. With the aim of avoiding this issue and reduc-
ing overfitting, we add Frobenius norm regularization
terms to the components. The resultant problem is

min
G,A(1),...,A(N)

H(G, A(1), . . . , A(N))

where we defined

H(G, A(1), . . . , A(N)) = F (G×1 A
(1) · · · ×N A(N))

+α

(
‖G‖2Fr +

N∑
n=1

∥∥∥A(n)
∥∥∥2
Fr

)
(9)

and α is a regularization parameter. Although the
regularization term is heuristic in nature, we will argue
in Section 5 that it helps avoiding overfitting.

We attempt to solve problem (9) by alternating min-
imization, where in each step we fix all components
but one and solve the resultant convex problem. We
distinguish three different cases: minimizing over G,
over A(1) (the set of components for the input data),
and over A(n) for any n ∈ {2, . . . , N}.

Minimizing over G. Equation (9) can be mini-
mized over G by noticing that

wt = A(1)G(1)

(
A(N) ⊗ · · · ⊗A(2)

)>
et (10)

where ⊗ denotes the Kronecker product and et ∈ RT
is a vector such that ett = 1 and ets = 0 for s 6= t. Here,
we express the weight vector estimators in terms of the
product of the first matricization of G with the other
factor matrices. This leads to the convex problem

min
G

T∑
t=1

mt∑
i=1

L
(
xt>i A(1)G(1)

(
A(N) ⊗ · · · ⊗A(2)

)>
et, yti

)
+

α ‖G‖2Fr
which we can solve by gradient descent if L is differ-
entiable. The gradient of H w.r.t G(1) is given by

T∑
t=1

mt∑
i=1

L′i,tA
(1)>xtie

t>
(
A(N) ⊗ · · · ⊗A(2)

)
+ 2αG(1)
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where L′i,t is the derivative of L with re-
spect to its first argument evaluated at
xt>i A(1)G(1)

(
A(N) ⊗ · · · ⊗A(2)

)>
et.

Finally, in order to obtain the tensor G, we only need
to invert the matricization operation.

Minimizing over A(1). In this case, we can reuse
the equality (10) to minimize over A(1). This can be
solved by gradient descent, where the gradient of H
w.r.t. to A(1) is given by

T∑
t=1

mt∑
i=1

L′i,tx
t
ie
t>
(
A(N) ⊗ · · · ⊗A(2)

)
G>(1) + 2αA(1).

Minimizing over A(n), n ∈ {2, . . . , N}. This set of
cases is more difficult to describe. In order to simplify
the presentation we assume that N = 3 and n = 2, but
the generalization to larger values is straightforward.
First of all, it is useful to note that the 2-mode splits
all tasks into p2 sets, each of which has p3 tasks. For
every θ ∈ [p2] we let Sθ be the set of tasks indexed by
(θ, ·). We rearrange the input data belonging to those
tasks as

X̃θ =


Xθ,1 0 · · · 0

0 Xθ,2 · · · 0
...

...
. . . 0

0 0 0 Xθ,p3

, ỹθ =


yθ,1

yθ,2

...
yθ,p3


where X̃θ ∈ Rp1p3×Mθ , ỹθ ∈ RMθ , and Mθ is the num-
ber of instances of all tasks belonging to group Sθ, that
is, Mθ =

∑
t∈Sθ

mt. Then, we can write

T∑
t=1

mt∑
i=1

L
(
xt>i W(1)e

t, yti
)

=
p2∑
θ=1

Mθ∑
i=1

L
(
x̃θ>i W(2)e

θ, ỹθi
)

=
p2∑
θ=1

Mθ∑
i=1

L
(
x̃θ>i

(
A(3) ⊗A(1)

)
G>(2)

(
A(2)>)

θ
, ỹθi

)
.

Notice that, unlike the previous cases, the columns of
A(2)> are decoupled, so we can solve instead p2 sim-
pler problems. The corresponding gradient of H with
respect to

(
A(2)>)

θ
is given by

Mθ∑
i=1

L′i,θG(2)

(
A(3) ⊗A(1)

)>
x̃θi + 2α

(
A(2)>)

θ
.

The local approach has a set of advantages derived
from the explicit calculation of the factors. First, it al-
lows for adding new factors in the setting without the
necessity of relearning the previous factors, thereby al-
lowing for transfer learning in a natural way. Second,
the memory needed is O

(∑N
n=1 pnkn +

∏N
n=1 kn

)

which can be much smaller than that of the convex ap-
proach, particularly if kn � pn for some n ∈ [N ]. The
main drawback of this approach is that the solution
obtained is a local optimum and there is no guarantee
about how far this is from the global optimum.

5. Experiments

We have conducted a set of experiments on one syn-
thetic dataset and two real world datasets. In this
section, we present and analyze the results obtained.
The predictive performances of the five methods out-
lined below are compared:

• Ridge Regression (RR): this model, chosen as a
baseline, makes no assumption regarding the re-
lationships among the tasks.

• Multitask Feature Learning (MTL-C): a convex
MTL approach developed in (Argyriou et al.,
2008a) which encourage all the tasks to share a
common low dimensional representation of the
data.

• Matrix Factorization (MTL-NC): a non convex
MTL approach consisting of applying the matrix
based counterpart to the proposed method de-
scribed in Section 4.

• Convex Multilinear Multitask Learning
(MLMTL-C): this approach, based on ten-
sor trace norm regularization, is described in
Section 3 and corresponds to an extension of
MTL-C to multilinear algebra.

• Non-convex Multilinear Multitask Learning
(MLMTL-NC): this is the approach proposed in
Section 4.

The last two methods have been implemented us-
ing the Tensor Toolbox (Bader & Kolda, 2006). All
methods have one hyper-parameter which needs to be
tuned. This is always done by means of a validation
set. The range of hyper-parameter values tried are
10s, for s = −3,−2, . . . , 5, 6. Preliminary experiments
show that this range for s empirically contains the best
solution for all approaches.

5.1. Synthetic Data

In order to test the correctness of the implementa-
tion of the algorithms proposed and to investigate the
performance, we create a synthetic dataset where the
weight tensor is decomposable as described in equa-
tion (8). This dataset is generated as follows: we cre-
ate a set of T = 100 tasks, organized in an p2 × p3



Multilinear Multitask Learning

20 30 40 50 60 70 80 90 100
0.01

0.012

0.014

0.016

0.018

0.02

m (Training Set Size)

M
S

E

 

 

RR

MTL−C

MTL−NC

MLMTL−C

MLMTL−NC

Figure 2. Synthetic dataset: Mean Square Error (MSE)
comparison between Ridge Regression (RR), Multitask
Feature Learning (Argyriou et al., 2008a) (MTL-C), Ma-
trix Factorization MTL (MTL-NC), Convex Multilinear
Multitask Learning (MLMTL-C) and Non-convex Multi-
linear Multitask Learning (MLMTL-NC).

grid where p2 = p3 = 10 and the input data has di-
mensionality p1 = 10. The tasks weight vectors can
consequently be organized in an N = 3 mode tensor
W ∈ Rp1×p2×p3 . Furthermore, this tensor has been
generated so that rankn (W ) = 3, ∀n ∈ [N ]. Particu-
larly, any element in the tensor has been generated
as W i1,i2,i3 =

∑3
j1,j2,j3=1 Gj1,j2,j3A

(1)
i1,j1

A
(2)
i2,j2

A
(3)
i3,j3

,
∀i1 ∈ [p1], i2 ∈ [p2], i3 ∈ [p3], where all elements
A

(1)
i1,j1

, A
(2)
i2,j2

, A
(3)
i3,j3

, Gj1,j2,j3 are generated by ran-
dom sampling from a Gaussian distribution N (0, 1).
For each task t = (i2, i3), a set of m training in-
stances xt1, . . . , xtm ∈ Rd are sampled from N (0, 1)
and the labels are generated by the linear regression
yti = w>t x

t
i + ηti , where wt = W i2,i3 and ηti are sam-

pled i.i.d. from N (0, 0.1). Similarly, a set of mval

and mtest instances and their corresponding labels are
generated for each task for validation and testing pur-
poses. The validation set is used to tune the regular-
ization parameter for all approaches. Additionally for
the factorization techniques (MTL-NC and MLMTL-
NC), the number of factors for each mode has been
fixed to the known values of the ranks.

The described experiment has been done for several
values of m in order to investigate the effect of the
number of training samples given. 20 trials have been
executed for each value of m. The average results are
shown in Figure 2, where we see that all MTL ap-
proaches perform better than ridge regression as ex-
pected. Furthermore, we see that among the convex
approaches, MLMTL-C is slightly better than its ma-
trix counterpart MTL-C although these differences are
only significant for m < 60. Regarding the non-convex

20 40 60 80 100
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0.0115

0.012

0.0125

m (Training Set Size)

M
S

E

 

 

MLMTL−NC (3, 3, 3)
MLMTL−NC (6, 6, 6)
MLMTL−NC (10, 10, 10)
MLMTL−C

Figure 3. Synthetic dataset: Mean Square Error (MSE)
comparison between Convex Multilinear Multitask Learn-
ing (MLMTL-C) and three versions of Non-convex Multi-
linear Multitask Learning (MLMTL-NC) (having different
values for the ranks).

approaches, we see that MLMTL-NC obtains the best
performance with a clear improvement with respect to
all remaining approaches. Nevertheless, in the current
setting, the non-convex approaches have advantage in
that the ground truth ranks of the tensor are known for
the synthetic dataset. To see how sensitive MLMTL-
NC approach is with respect to incorrect values of the
ranks, we have carried out a similar experiment where
we compare MLMTL-C and three versions of MLMTL-
NC, taking each one different values for the ranks.

The results are shown in Figure 3. The MLMTL-NC
approaches with ranks = (1, 1, 1) and ranks = (2, 2, 2),
which have ranks smaller than the true values, are not
shown due to very poor performance1. As expected,
the best approach is MLMTL-NC (3, 3, 3) since in this
case the ranks coincides with the actual ranks of the
underlying tensor. However, we see that MLMTL-
NC approaches with higher values of ranks perform
quite similarly and in all of these cases there is an im-
provement with respect to MLMTL-C approach. This
supports the hypothesis that MLMTL-NC approach is
quite insensitive to the values of ranks, as long as they
are an overestimation of the actual ones.

Finally, we empirically assess the computational effi-
ciency of the approaches for different tensor dimen-
sions. The results can be seen in Table 1. Both
MLMTL approaches require more time for the learn-
ing process. Furthermore, we see that MLMTL-NC
scales better than the convex counterpart as the size
of the tensor increases.

1MLMTL-NC (2, 2, 2) approach obtains an error around
0.08 whereas the error of MLMTL-NC (1, 1, 1) approach is
above 0.16
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Tensor dim. [20, 20, 20] [30, 30, 30] [40, 40, 40]

RR 0.0163 0.0641 0.1541

MTL-C 0.2464 0.8751 2.4255

MTL-NC 0.4388 0.7801 1.2973

MLMTL-C 4.5105 21.1303 133.5753

MLMTL-NC 19.3252 30.6920 53.2175

Table 1. Execution time (s) of Ridge Regression (RR),
Multitask Feature Learning (MTL-C), Matrix Factor-
ization MTL (MTL-NC), Convex Multilinear Multitask
Learning (MLMTL-C), and Non-convex Multilinear Mul-
titask Learning (MLMTL-NC).

5.2. Real Data

In this section, we test the described approaches with
two real world datasets. For both datasets we want to
infer the weight tensor W ∈ Rp1×p2×p3 , where p1 is
the number of attributes, p3 is the number of subjects
involved in the data and p2 is the number of tasks we
want to learn for each subject.

In these experiments, we also compare with a version
of each non-MLMTL approach that ignores the subject
identifier index and groups all of the instances. This
leads to only one generic impersonal predictor for each
p2 task. This is done with the objective of appraising
the effect of discarding the information provided by
one mode. The resultant approaches are denoted as
GRR, GMTL-C and GMTL-NC.

Regarding the multilinear approaches, the value
of each rankn for MLMTL-NC has been set to
min(10, pn) for both experiments. This value is
deemed to be a safe overestimate of the true rank on
these data. The results of the previous experiments,
presented in Figure 3, show that overestimates have a
minimal effect on the final performance.

5.2.1. Restaurant & Consumer Dataset

The Restaurant & Consumer Dataset (Vargas-Govea
et al., 2011) contains data to build a restaurant rec-
ommender system where the objective is to predict
consumer ratings given to different restaurants. Each
of the p3 = 138 consumers gave p2 = 3 scores for
food quality, service quality and overall quality. The
dataset also contains p1 = 44 various descriptive at-
tributes of the restaurants (such as geographical posi-
tion, cuisine type and price band). We consider this
to be a regression problem where the objective is to
predict the scores given the attributes of a restaurant
as an input query. Since there are 138 consumers, this
leads to a multitask problem composed of 138× 3 re-
gression tasks.

This experiment was conducted in a similar way to the
synthetic dataset, so that the training, validation and
test sets were randomly selected for each task. The
process was repeated 20 times for each value of m and
the average results are shown in Figure 4.
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Figure 4. Restaurant & Consumer Dataset: Mean Square
Error (MSE) comparison between [Grouped] Ridge Re-
gression ([G]RR), [Grouped] Multitask Feature Learn-
ing ([G]MTL-C), [Grouped] Matrix Factorization MTL
([G]MTL-NC), Convex Multilinear Multitask Learning
(MLMTL-C) and Non-convex Multilinear Multitask Learn-
ing (MLMTL-NC).

We observe that both MLMTL approaches outperform
the remaining methods for m ≥ 750. A set of paired
t-test conducted between each pair of MLMTL and
non-MLMTL shows that this improvement in the per-
formance is significant obtaining always p-values be-
low 0.01. This fact supports our hypothesis about the
multi-modal relation among tasks and how MLMTL
can take advantage of this over conventional MTL
methods. We also checked the significance of the im-
provement observed between both MLMTL methods
for m ≥ 750, obtaining p-values below 0.025.

5.2.2. Shoulder Pain Dataset

In the second real world experiment we use the Shoul-
der Pain dataset (Lucey et al., 2011), which contains
video clips of the faces of people who suffer from shoul-
der pain while performing active and passive exercises.
For each frame of the video, the facial expression is
described by a set of p1 = 132 attributes (2D posi-
tions of 66 anatomical points). Each video is labelled
frame by frame according to the physical activation of
different set of facial muscles, encoded by the Facial
Action Coding System (Ekman et al., 1978). This sys-
tem defines a set of Action Units (AU) which refer to
a contraction or relaxation of a determined set of mus-
cles, e.g. AU6 is defined as the raising of a cheek. In
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this dataset, the intensity of an AU is expressed as a
degree which ranges between 0 and 5. Our objective is
to recognise the AU intensity level of p2 = 5 different
AUs for each of the p3 = 5 different patients.

One common problem on this kind of data is that some
subjects may not have shown any intensity for some
AUs in the training set. For such AU/patient tasks
traditional supervised learning approaches will not be
effective. In contrast, MLMTL methods can naturally
handle this scenario. Therefore, in this dataset we
focus on assessing the performances of the methods
in situations where no instances are provided to learn
some of the tasks. The performances of the approaches
are measured only on those tasks with no training in-
stances, which we will refer to as target tasks hereafter.
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Figure 5. Shoulder Pain database: Mean Square Error
(MSE) comparison between Grouped Ridge Regression
(GRR), Grouped Multitask Feature Learning (GMTL-C),
Group Matrix Factorization (GMTL-NC), Convex Multi-
linear Multitask Learning (MLMTL-C) and Non-convex
Multilinear Multitask Learning (MLMTL-NC).

A set of Ttarget = 2 tasks are selected at random
and the instances available for them are not used in
the training process. Similarly, another set of tasks
Tval = 2 are selected randomly for tuning the hy-
perparameters so that at the training stage, no in-
stances from these tasks are used. Finally, m instances
are used for the learning process of the remaining
tasks and constitutes all of the information provided
to the models to produce good estimators for the tar-
get tasks. Note that classic supervised learning ap-
proaches cannot learn predictors for tasks where there
are no training instances. Therefore, we only com-
pare with the grouped approaches (GRR, GMTL-C
and GMTL-NC).

30 trials for different values of m were run, the aver-
aged results are shown in Figure 5. The approaches
based on tensors outperform their matrix based coun-

terparts. A paired t-test shows that the improvement
between MLMTL-NC and any other matrix approach
is significant (p < 0.01) for all m. Also we see that
MLMTL-NC generally outperforms MLMTL-C.

6. Discussion

In this paper, we have investigated two approaches for
multilinear multitask learning. One being an adap-
tation of the low-rank tensor recovery strategy which
employs a convex relaxation of the tensor decompo-
sition problem. The second is based on an alternat-
ing minimization algorithm which optimizes the origi-
nal non-convex problem together with a set of Frobe-
nius norm regularizers to avoid overfitting. The sets
of experiments carried out on both synthetic and real
data support the hypothesis that employing multilin-
ear methods in the described MTL scenarios is advan-
tageous.

These approaches are useful in a multitask learning
scenario where there is a priori information about how
tasks are related among them, being these relations
expressed as combinations of prescribed factors. This
is the case for many real world datasets that contain
multiple modalities. Even though such datasets are
now commonplace, it is often seen that inter-task rela-
tionships are only exploited in one modality such as in
stantard MTL. Furthermore, we have seen that mul-
tilinear models can obtain predictors for tasks which
have no training instances, so long as there are enough
training instances for other related tasks. This could
potentially be of significant value in scenarios where
specific instances in the data are missing or more dif-
ficult to gather.

The proposed methods use one hyperparameter to con-
trol the regularization over all matricizations of the
tensor (γ in MLMTL-C and α in MLMTL-NC). An
avenue for further study would be to assign a hyper-
parameter to each matricization regularizer, in order
to trade-off the regularizing effect on each matriciza-
tion. An interesting goal would be to find a way to
tune these hyperparameters without any significant in-
crease in computational expense.

Acknowledgments

This work was supported by EPSRC Grants
EP/H016988/1, EP/H027203/1, and Royal Society In-
ternational Joint Project Grant 2012/R2.



Multilinear Multitask Learning

References
Ando, R.K. and Zhang, T. A framework for learning

predictive structures from multiple tasks and unla-
beled data. J. Machine Learning Research, 6:1817–
1853, 2005.

Argyriou, A., Evgeniou, T., and Pontil, M. Con-
vex multi-task feature learning. Machine Learning,
73(3):243–272, 2008.

Argyriou, A., Maurer, A., and Pontil, M. An algo-
rithm for transfer learning in a heterogeneous envi-
ronment. Proc. European Conf. Machine Learning,
pages 71–85, 2008.

Bader, B. W. and Kolda, T. G. Algorithm 862:
MATLAB tensor classes for fast algorithm prototyp-
ing ACM Transactions on Mathematical Software,
32(4):635–653, 2006.

Baxter, J. A model for inductive bias learning. J. of
Artificial Intelligence Research, 12:149–198, 2000.

Bertsekas, D.P. and Tsitsiklis, J.N. Parallel
and Distributed Computation: Numerical Methods,
Prentice-Hall, 1989.

Caruana, R. Multi-task learning. Machine Learning,
28:41–75, 1997.

Ekman, P., Friesen, W. Facial Action Coding System:
A Technique for the Measurement of Facial Move-
ment. Consulting Psychologists Press, 1978.

Gandy, S., Recht, B., and Yamada, I. Tensor com-
pletion and low-n-rank tensor recovery via convex
optimization. Inverse Problems, 27, 2011.

Kolda, T. G. and Bader, B. W. Tensor decomposi-
tions and applications. SIAM Review, 51(3):455–
500, 2009.

Kumar, A. and Daumé III, H. Learning task group-
ing and overlap in multitask learning. International
Conference on Machine Learning (ICML), 2012.

Liu, J., Musialski, P., Wonka, P., and Ye, J. Tensor
completion for estimating missing values in visual
data. Proc. 12th International Conference on Com-
puter Vision (ICCV), pages 2114–2121, 2009.

Lucey, P. and Cohn, J.F. and Prkachin, K.M. and
Solomon, P.E., and Matthews, I. PAINFUL DATA:
The UNBC-McMaster Shoulder Pain Expression
Archive Database. IEEE Facial and Gesture (FG),
pages 57–64, 2011.

van der Maaten, L. Audio-Visual Emotion Challenge
2012: A Simple Approach. Workshop ICMI 12,
2012.

Maurer, A. Transfer bounds for linear feature learning.
Machine Learning, 75(3):327–350, 2009.

Maurer, A. and Pontil, M. Excess risk bounds for
multitask learning with trace norm regularization.
arXiv:1212.1496, 2012.

Maurer, A., Pontil, M., Romera-Paredes, B. Sparse
coding for multitask and transfer learning. Inter-
national Conference on Machine Learning (ICML),
2013.

Mpiperis, I., Malassiotis, S., and Strintzis, M.G. Bi-
linear elastically deformable models with applica-
tion to 3D face and facial expression recognition.
Proc. 8th International Conference on Automatic
Face and Gesture Recognition, pages 1–8, 2008.

Romera-Paredes, B., Argyriou A., Bianchi-Berthouze,
N., Pontil, M. Exploiting unrelated tasks in multi-
task learning. JMLR - Proceedings Track, 22:951–
959, 2012.

Signoretto, M., De Lathauwer, L., Suykens, J.A.K.
Nuclear norms for tensors and their use for convex
multilinear estimation, Technical Report, 2012.

Signoretto, M., Tran Dinh, Q., De Lathauwer, L.,
Suykens, J.A.K. Learning with tensors: a framework
based on convex optimization and spectral regular-
ization. Machine Learning, to appear.

Signoretto, M., Van de Plas, R., De Moor, B., and
Suykens, J.A.K. Tensor versus matrix completion: a
comparison with application to spectral data. IEEE
Signal Processing Letters, 18(7):403–406, 2011.

Tenenbaum, J.B. and Freeman, W.T. Separating style
and content with bilinear models. Neural Computa-
tion, 12(6):1247–1283, 2000.

Tomioka, R., Hayashi, K., Kashima, H., Presto, J.S.T.
Estimation of Low-Rank Tensors via Convex Opti-
mization. 2010.

Vargas-Govea, B. and González-Serna, G. and Ponce-
Medellín, R. Effects of relevant contextual features
in the performance of a restaurant recommender sys-
tem. RecSys 11: Workshop on Context Aware Rec-
ommender Systems (CARS-2011), 2011.

Vasilescu, M. A. O. and Terzopoulos, D. Multilin-
ear image analysis for facial recognition. Proc.
16th International Conference on Pattern Recogni-
tion (ICPR), pages 511–514, 2002.

Vasilescu, M. A. O. and Terzopoulos, D. Multilinear
independent components analysis. Proc. 2005 Con-
ference on Computer Vision and Pattern Recogni-
tion (CVPR), pages 547–553, 2005.



Multilinear Multitask Learning

A. Solution of ADM

The underlying algorithm to solve problem (8) is based
on the ADM method, (see e.g. Bertsekas & Tsitsiklis,
1989). It consists of iteratively applying the update
equations

(a) W [i+1] ← argmin
W

L
(
W ,C[i]B[i]

)
(b) B[i+1]

n ← argmin
Bn

L
(
W [i+1],C[i],B

)
(c) C

[i+1]
n ← C

[i]
n −

(
βW [i+1] −B[i+1]

n

)
for n = 1, . . . , N , where L is the augmented La-
grangian for problem (8) and is defined in equation
(7).

We now discuss each of these steps in turn.

Minimizing over W

In order to solve Step (a), we need to solve the problem

min
W

{
F (W )−

N∑
n=1

(
〈Cn,W −Bn〉+ β

2 ‖W −Bn‖2Fr
)}

which is equal to

min
W

{
F (W )−

〈
N∑
n=1

Cn + βBn,W

〉
+
Nβ

2
‖W ‖2Fr+c

}
,

for some constant c whose value is independent of W .

Notice that the terms where the whole tensor W ap-
pears are both the square of its Frobenius norm and
inner products with other tensors. By using the defi-
nition of the tensor inner products, it is easy to see
that in both cases we can decouple the whole ten-
sor W in terms of the fibers of its mode-1 unfolding,
that is the original tasks weight vectors: 〈Z,W 〉 =
T∑
t=1
〈Z :,t,W :t〉 , ∀Z ∈ Rp1×···×pN . Consequently, solv-

ing the above optimization problem is equivalent to
solving the following T = p2p3 . . . pN minimization
problems

min
w

∑mt
i=1 L (〈xti, wt〉, yti)

−

〈(
N∑
n=1

Cn + βBn

)
(1),t

, w

〉
+ Nβ

2 ‖wt‖
2
Fr ,

(11)

for all t ∈ {1, . . . , T}, where we use the notation wt =

Ŵ (1),t. In particular, if we consider one half of the
square loss function, then the solution to problem (11)
has the close form

wt =(
XtXt> +NβI

)−1 [
Xtyt +

(
N∑
n=1

Cn + βBn

)
(1),t

]

where Xt is the d × mt data matrix for task t, that
is, the columns of Xt are the inputs xti, i = 1, . . . ,mt,
and yt = (yt1, . . . , y

t
mt)

>.

Minimizing over Bn

Minimizing equation (7) over Bn is equivalent to the
problem

min
Bn (n)

γ
∥∥Bn (n)

∥∥
1,1
−
〈
Cn (n),W(n) −Bn (n)

〉
+
β

2

∥∥W(n) −Bn (n)

∥∥2
Fr

which is the same as the problem

min
Bn (n)

γ

β

∥∥Bn (n)

∥∥
1,1

+

〈
1

β
Cn(n) −W(n), Bn(n)

〉
+

1

2

∥∥Bn (n)

∥∥2
Fr

+Q1

which in turn equals to

min
Bn (n)

γ
β

∥∥Bn (n)

∥∥
1,1

+ 1
2

∥∥∥Bn (n) −
(

1
βCn(n) −W(n)

)∥∥∥2
Fr

+Q2,
(12)

for some constant matrices Q1, Q2 ∈ Rpn×Jn . The
solution to problem (12) is given by (Gandy et al.,
2011) as

B̂n (n) = shrink
(

1
βCn(n) −W(n),

γ
β

)
,

where shrink (M,k) is a function that shrinks the
eigenvalues of the matrix M by k. That is, given M =
UΣV T , where Σ is a diagonal matrix containing the
singular values ofM , then shrink (M,k) = USk(Σ)V T ,
where Sk(Σ) = diag(max{Σi,i − k, 0}).


